Difference between revisions of "Edge template VI2a"

From HexWiki
Jump to: navigation, search
(The edge template template VI2)
Line 19: Line 19:
 
If Blue blocks at E5 then Red plays F3, reducing to [[Template IVb]]
 
If Blue blocks at E5 then Red plays F3, reducing to [[Template IVb]]
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e5 R2f3 Pe3 Pg3 Pc4 Pd4 Pe4 Pf4 Pg4 Ph4 Pb5 Pc5 Pd5 Pf5 Pg5 Ph5 Pa6 Pb6 Pc6 Pd6 Pe6 Pf6 Pg6 Ph6</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e5 R2f3 Pe3 Pg3 Pc4 Pd4 Pe4 Pf4 Pg4 Ph4 Pb5 Pc5 Pd5 Pf5 Pg5 Ph5 Pa6 Pb6 Pc6 Pd6 Pe6 Pf6 Pg6 Ph6</hex>
  
 
Likewise if blue blocks at F5:
 
Likewise if blue blocks at F5:
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1f5 R2g3 Pf3 Ph3 Pd4 Pe4 Pf4 Pg4 Ph4 Pi4 Pc5 Pd5 Pe5 Pg5 Ph5 Pi5 Pb6 Pc6 Pd6 Pe6 Pf6 Pg6 Ph6 Pi6</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1f5 R2g3 Pf3 Ph3 Pd4 Pe4 Pf4 Pg4 Ph4 Pi4 Pc5 Pd5 Pe5 Pg5 Ph5 Pi5 Pb6 Pc6 Pd6 Pe6 Pf6 Pg6 Ph6 Pi6</hex>
  
 
== Intrusion at E6 ==
 
== Intrusion at E6 ==
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 Pe3 Pc4 Pd4 Pe4 Pb5 Pc5 Pd5 Pa6 Pb6 Pc6 Pd6</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 Pe3 Pc4 Pd4 Pe4 Pb5 Pc5 Pd5 Pa6 Pb6 Pc6 Pd6</hex>
  
 
Red threatens to connect via D4. Blue must respond in one of the marked hexs.
 
Red threatens to connect via D4. Blue must respond in one of the marked hexs.
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 B3e4 R4h4</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 B3e4 R4h4</hex>
  
 
The H4 piece is connected to the bottom with [[defending against intrusions in template 1-IIIa|template III-1-a]], and is connected to the top in two non-overlapping ways:
 
The H4 piece is connected to the bottom with [[defending against intrusions in template 1-IIIa|template III-1-a]], and is connected to the top in two non-overlapping ways:
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 B3e4 R4h4 Pi1 Ph2 Ri2 Ph3 Pi3</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 B3e4 R4h4 Pi1 Ph2 Ri2 Ph3 Pi3</hex>
  
 
and
 
and
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 B3e4 R4h4 Pf2 Pg2 Pg3 Pf4 Rg4</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1e6 R2f3 B3e4 R4h4 Pf2 Pg2 Pg3 Pf4 Rg4</hex>
  
 
== Intrusion at F4 ==
 
== Intrusion at F4 ==
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1f4 R2d4</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1f4 R2d4</hex>
  
 
The Red piece at D4 is connected to the bottom. Blue has two direct attempts to block:
 
The Red piece at D4 is connected to the bottom. Blue has two direct attempts to block:
Line 48: Line 48:
 
=== Block at F2 ===
 
=== Block at F2 ===
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bf4 Rd4 B1f2 R2g3 B3f3 R4h4</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bf4 Rd4 B1f2 R2g3 B3f3 R4h4</hex>
  
 
Red is now connected to the bottom via [[defending against intrusions in template 1-IIIa|template III-1-a]]. Note that neither of Red's threats overlapped.
 
Red is now connected to the bottom via [[defending against intrusions in template 1-IIIa|template III-1-a]]. Note that neither of Red's threats overlapped.
Line 54: Line 54:
 
=== Block at E3 ===
 
=== Block at E3 ===
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bf4 Rd4 B1e3 R2f3 B3e4 R4h3</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bf4 Rd4 B1e3 R2f3 B3e4 R4h3</hex>
  
 
The Red piece at H3 is connected to the top and threatening to connect to the bottom. Blue has one defense:
 
The Red piece at H3 is connected to the top and threatening to connect to the bottom. Blue has one defense:
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bf4 Rd4 Be3 Rf3 Be4 Rh3 B1h4 R2g4 B3f6 R4f5 B5e6 R6e5 B7d6 R8d5 B9c6</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bf4 Rd4 Be3 Rf3 Be4 Rh3 B1h4 R2g4 B3f6 R4f5 B5e6 R6e5 B7d6 R8d5 B9c6</hex>
  
 
And now Red can connect via B5.
 
And now Red can connect via B5.
Attempts by blue to block the use of the D4 piece as a ladder escape can be shown to not work.
+
Attempts by Blue to block the use of the D4 piece as a ladder escape can be shown to not work.
  
 
== Intrusion at G2 ==
 
== Intrusion at G2 ==
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1g2 R2f2</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1g2 R2f2</hex>
  
 
Blue has four options that don't immediately reduce to another edge template:
 
Blue has four options that don't immediately reduce to another edge template:
 
=== Block at E4 ===
 
=== Block at E4 ===
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1e4 R2g3</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1e4 R2g3</hex>
  
 
Red's G3 piece is connected to the top via F3 or H2.
 
Red's G3 piece is connected to the top via F3 or H2.
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 Be4 Rg3 B1g4 R2f4 B3e6 R4c5</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 Be4 Rg3 B1g4 R2f4 B3e6 R4c5</hex>
  
Here Red has created a [[Ladder escape fork]]. If blue blocks the ladder Red plays at D3.
+
Here Red has created a [[Ladder escape fork]]. If Blue blocks the ladder Red plays at D3.
  
 
=== Block at D5 ===
 
=== Block at D5 ===
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1d5 R2e4 B3e5 R4g4 B5f4 R6h2</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1d5 R2e4 B3e5 R4g4 B5f4 R6h2</hex>
  
 
And Red has connected. If blue choose to play at E6 instead of E5:
 
And Red has connected. If blue choose to play at E6 instead of E5:
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 Bd5 Re4 B1e6 R2e5 B3d6 R4g5 B5f5 R6g4 B7f4 R8h2</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 Bd5 Re4 B1e6 R2e5 B3d6 R4g5 B5f5 R6g4 B7f4 R8h2</hex>
  
 
=== Block at C6 ===
 
=== Block at C6 ===
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1c6 R2e4 B3e5 R4g4 B5f4 R6h2</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1c6 R2e4 B3e5 R4g4 B5f4 R6h2</hex>
  
 
=== Block at E6 ===
 
=== Block at E6 ===
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1e6 R2e4 B3d5 R4e5 B5d6 R6g5</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 B1e6 R2e4 B3d5 R4e5 B5d6 R6g5</hex>
  
 
Play continues...
 
Play continues...
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 Be6 Re4 Bd5 Re5 Bd6 Rg5 B1f5 R2g4 B3f4 R4h2</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bg2 Rf2 Be6 Re4 Bd5 Re5 Bd6 Rg5 B1f5 R2g4 B3f4 R4h2</hex>
  
 
== Intrusion at D6 or F6 ==
 
== Intrusion at D6 or F6 ==
Line 101: Line 101:
 
The D6 case is shown here, but Red's responses work symmetrically for the F6 case.
 
The D6 case is shown here, but Red's responses work symmetrically for the F6 case.
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1d6 R2f5 Pf4 Pg4 Pg3 Pg2 Ph2</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 B1d6 R2f5 Pf4 Pg4 Pg3 Pg2 Ph2</hex>
  
 
Red's F5 piece is connected to the bottom. To prevent its connection to the top, Blue must move in one of the marked tiles.
 
Red's F5 piece is connected to the bottom. To prevent its connection to the top, Blue must move in one of the marked tiles.
Line 107: Line 107:
 
=== Block at F4 ===
 
=== Block at F4 ===
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1f4 R2g4 B3h2 R4f3 B5g3 R6e4 B7e5 R8c5</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1f4 R2g4 B3h2 R4f3 B5g3 R6e4 B7e5 R8c5</hex>
  
 
Or, if for move three Blue played G3:
 
Or, if for move three Blue played G3:
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 Bf4 Rg4 B1g3 R2i2 B3h3 R4i3 B5h4 R6i4 B7h6 R8h5</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 Bf4 Rg4 B1g3 R2i2 B3h3 R4i3 B5h4 R6i4 B7h6 R8h5</hex>
  
 
And Red cannot be stopped. Note that this method does not require the three right-most tiles. This means that this method can be used by Red in the symmetrical case of Blue intruding at F6.
 
And Red cannot be stopped. Note that this method does not require the three right-most tiles. This means that this method can be used by Red in the symmetrical case of Blue intruding at F6.
Line 117: Line 117:
 
=== Block at G2 ===
 
=== Block at G2 ===
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g2 R2h2 B3g4 R4f3 B5f4 R6e4 B7e5 R8c5 Pg3 Pf2</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g2 R2h2 B3g4 R4f3 B5f4 R6e4 B7e5 R8c5 Pg3 Pf2</hex>
  
 
Note that Red's F3 piece is connected via the two marked tiles. If Blue had played G3 for move three:
 
Note that Red's F3 piece is connected via the two marked tiles. If Blue had played G3 for move three:
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g2 R2h2 B3g3 R4h3 B5g4 R6h4</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g2 R2h2 B3g3 R4h3 B5g4 R6h4</hex>
  
 
And Red connects via [[defending against intrusions in template 1-IIIa|template III-1-a]].
 
And Red connects via [[defending against intrusions in template 1-IIIa|template III-1-a]].
Line 129: Line 129:
 
Red's responses are similar in all three cases:
 
Red's responses are similar in all three cases:
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1h2 R2f3 B3f4 R4e4 B5e5 R6c5</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1h2 R2f3 B3f4 R4e4 B5e5 R6c5</hex>
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g3 R2f3 B3f4 R4e4 B5e5 R6c5</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g3 R2f3 B3f4 R4e4 B5e5 R6c5</hex>
  
<hex>R6 C10 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g4 R2f3 B3f4 R4e4 B5e5 R6c5</hex>
+
<hex>R6 C10 Q1 Vg1 Vh1 Sa1 Sa2 Sa3 Sa4 Sa5 Sb1 Sb2 Sb3 Sb4 Sc1 Sc2 Sc3 Sd1 Sd2 Se1 Sj1 Sj2 Sj3 Bd6 Rf5 B1g4 R2f3 B3f4 R4e4 B5e5 R6c5</hex>
  
 
[[Category:Edge templates]]
 
[[Category:Edge templates]]
 
{{stub}}
 
{{stub}}

Revision as of 17:45, 12 June 2009

The edge template template VI2

abcdefghij123456

Let us first see what possibilities Red has if he moves first.

There are two obvious options:

In both diagrams the possible intrusion points are marked by (+). So we only have to consider the intersection of the intrusion points. They are:

Intrusion at E5 and F5

If Blue blocks at E5 then Red plays F3, reducing to Template IVb

abcdefghij12345621

Likewise if blue blocks at F5:

abcdefghij12345621

Intrusion at E6

abcdefghij12345621

Red threatens to connect via D4. Blue must respond in one of the marked hexs.

abcdefghij1234562341

The H4 piece is connected to the bottom with template III-1-a, and is connected to the top in two non-overlapping ways:

abcdefghij1234562341

and

abcdefghij1234562341

Intrusion at F4

abcdefghij12345621

The Red piece at D4 is connected to the bottom. Blue has two direct attempts to block:

Block at F2

abcdefghij1234561324

Red is now connected to the bottom via template III-1-a. Note that neither of Red's threats overlapped.

Block at E3

abcdefghij1234561243

The Red piece at H3 is connected to the top and threatening to connect to the bottom. Blue has one defense:

abcdefghij123456218649753

And now Red can connect via B5. Attempts by Blue to block the use of the D4 piece as a ladder escape can be shown to not work.

Intrusion at G2

abcdefghij12345621

Blue has four options that don't immediately reduce to another edge template:

Block at E4

abcdefghij12345621

Red's G3 piece is connected to the top via F3 or H2.

abcdefghij1234562143

Here Red has created a Ladder escape fork. If Blue blocks the ladder Red plays at D3.

Block at D5

abcdefghij123456625413

And Red has connected. If blue choose to play at E6 instead of E5:

abcdefghij12345687625431

Block at C6

abcdefghij123456625431

Block at E6

abcdefghij123456234651

Play continues...

abcdefghij1234564321

Intrusion at D6 or F6

The D6 case is shown here, but Red's responses work symmetrically for the F6 case.

abcdefghij12345621

Red's F5 piece is connected to the bottom. To prevent its connection to the top, Blue must move in one of the marked tiles.

Block at F4

abcdefghij12345634561287

Or, if for move three Blue played G3:

abcdefghij12345621345687

And Red cannot be stopped. Note that this method does not require the three right-most tiles. This means that this method can be used by Red in the symmetrical case of Blue intruding at F6.

Block at G2

abcdefghij12345612465387

Note that Red's F3 piece is connected via the two marked tiles. If Blue had played G3 for move three:

abcdefghij123456123456

And Red connects via template III-1-a.

Block at H2, G3, or G4

Red's responses are similar in all three cases:

abcdefghij123456124365
abcdefghij123456214365
abcdefghij123456243165